

Bio-based polymers – A sustainable solution for the next decades

Annual Meeting 2008 of the Dutch Polymer Institute

Crowne Plaza Antwerp, Antwerp, Belgium 25-26 November 2008

Dr. Martin Patel Utrecht University, Department of Science, Technology and Society (STS) / Copernicus Institute, Utrecht, Netherlands Tel.: +31 30 253-7634, Fax +31 30 253-7601, m.k.patel@uu.nl

Contents

- Truly needed?
- Measuring environmental sustainability
- Bifurcation
- More evidence
- Limits to growth
- Building block for sustainable development

Contents

- Truly needed?
- Measuring environmental sustainability
- Bifurcation
- More evidence
- Limits to growth
- Building block for sustainable development

Bio-based polymers - Truly needed?

The cons:

- Material performance often lower
- High costs for production and processing
- Total energy (= NREU + REU) often higher than for conventional

Universiteit Utrecht

- Small share of fossil fuels
- Last drops of oil for high value added products
- (Potential) Competition with food
- Threat to biodiversity
- Biodegradable polymers
 - May cause additional GHG (methane!)
 - Carbon sequestration in compost is low
 - No solution for littering

Bio-based polymers - Truly needed?

Pros:

- World Energy Outlook by the International Energy Agency (IEA):
 Oil price in 2030: 29 \$/bbl (IEA, 2004) → 120 \$/bbl (Nov. 2008)
- IPCC, Feb. 2007: Evidence now "unequivocal" that global warming is man-made

Bio-based polymers - Truly needed?

Pros:

- World Energy Outlook by IEA (Nov. 2008):
 Oil price in 2030: 29 \$/bbl (IEA, 2004) → 120 \$/bbl (Nov. 2008)
- IPCC, Feb. 2007: Evidence now "unequivocal" that global warming is man-made
- Chem. ind. sector by far largest industrial energy user

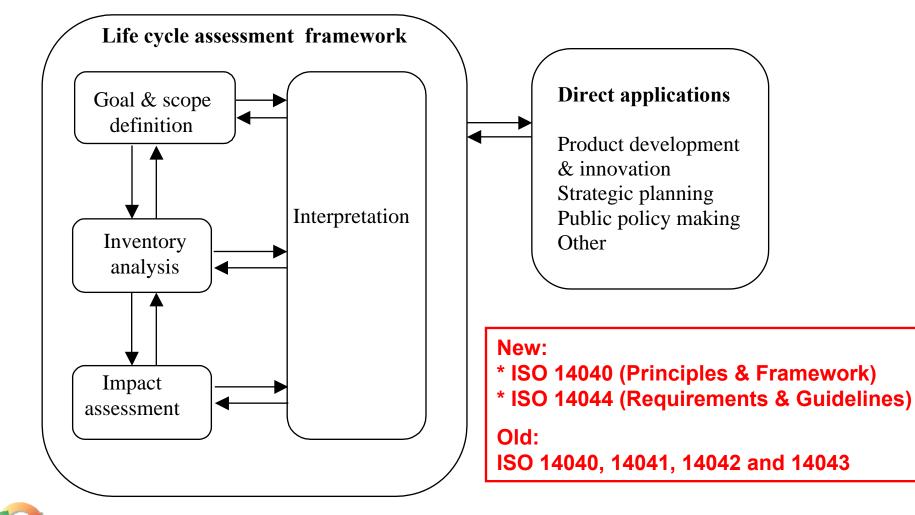
Bio-based polymers - Truly needed?

Pros:

- World Energy Outlook by IEA (Nov. 2008):
 Oil price in 2030: 29 \$/bbl (IEA, 2004) → 120 \$/bbl (Nov. 2008)
- IPCC, Feb. 2007: Evidence now "unequivocal" that global warming is man-made
- Chem. ind. sector by far largest industrial energy user
- Large-scale investments in renewables and energy efficiency, while more oil available for chemicals → pressure GHG policy, image loss
- Innovation, rejuvenation of sector

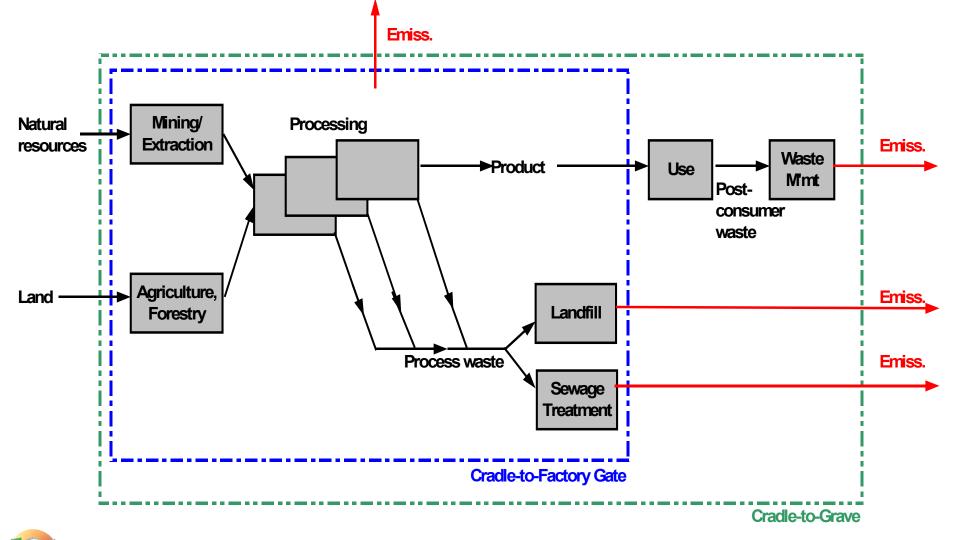
Contents

- Truly needed?
- Measuring environmental sustainability
- Bifurcation
- More evidence
- Limits to growth
- Building block for sustainable development

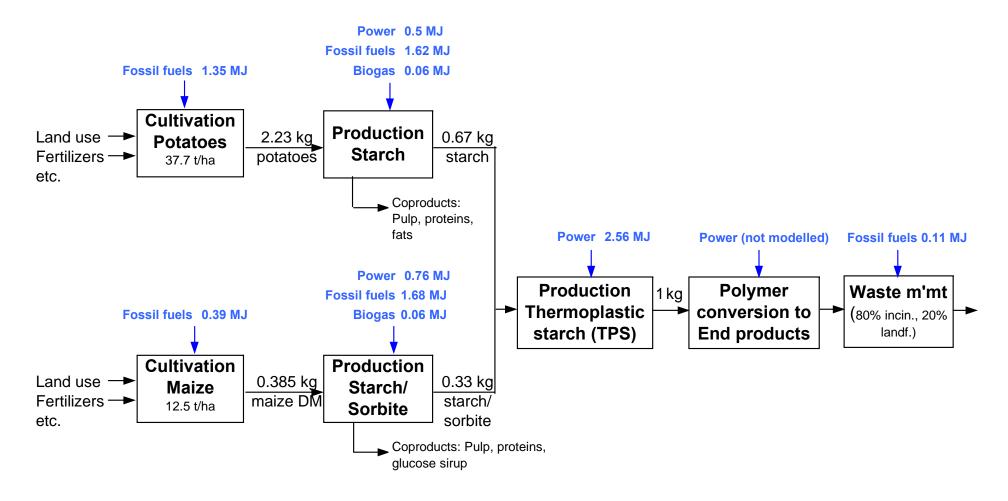


Life cycle assessment (LCA) is the only comprehensive way of assessing the environmental impacts of a product or a service.

Steps of an LCA



Copernicus Institute


System boundaries

State-of-the-art of LCA methodology

Thermoplastic starch - Flow diagramme

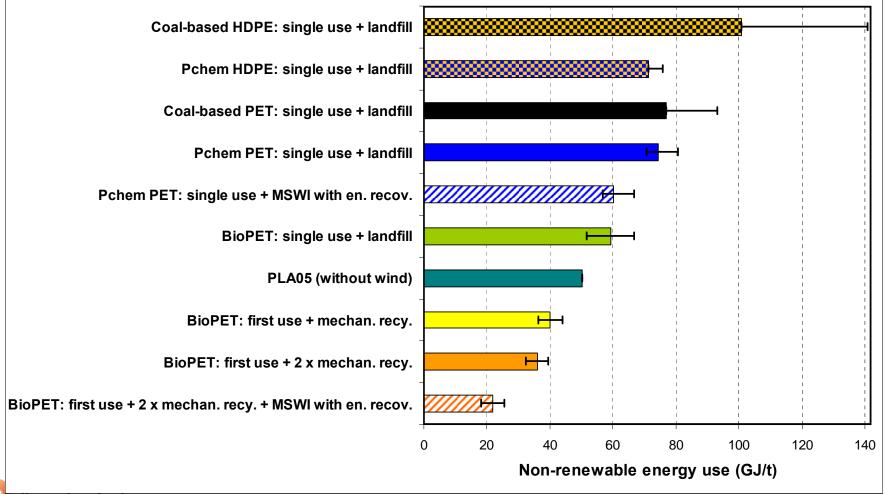
Copernicus Institute Research Institute for Sustainable Development and Innovation Source: CARBOTECH, 1996

Important Environmental Impact Categories

- Non-renewable energy use (NREU)
- Renewable energy use (REU)
- Total energy use (TEU = NREU + REU)
- Land use
- CO₂ equivalents (CO2)
- Abiotic Depletion (ADP)
- Ozone Layer Depletion (ODP)
- Photochemical oxidant formation (smog precursor) (POF)
- Water use (process, cooling) (PW, CW)
- Acidification (ACID)
- Eutrophication (EUTRO)
- Human toxicity
- Aquatic toxicity
- Terrestrial ecotoxicity

Caveats w.r.t. Environmental Impact Categories

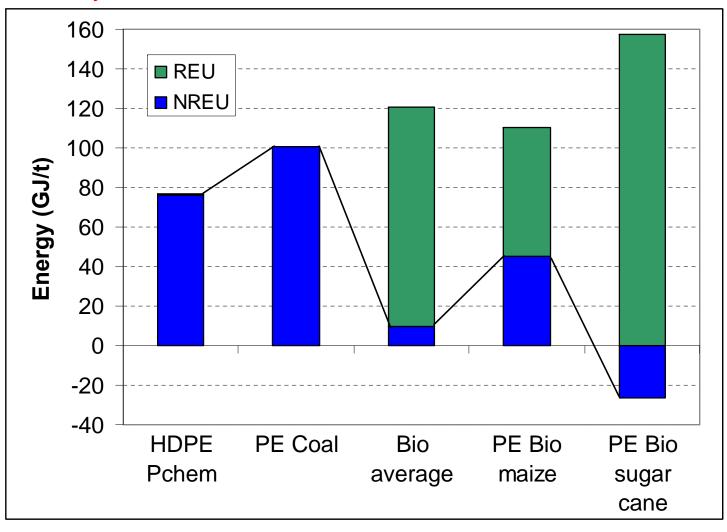
- There is no pre-defined, standardized list.
- The list is incomplete, important missing categories are:
 - Biodiversity
 - GMO
 - Water (aggregated assessment)
 - Soil erosion
 - Soil fertility and carbon content of soil
 - Types of land use (agriculture, forest; climate zone)
- Toxicity impacts are highly uncertain; improvement of methodology and data is subject to continuous improvement.


Contents

- Truly needed?
- Measuring environmental sustainability
- Bifurcation
- More evidence
- Limits to growth
- Building block for sustainable development

Development potentials of PET in perspective

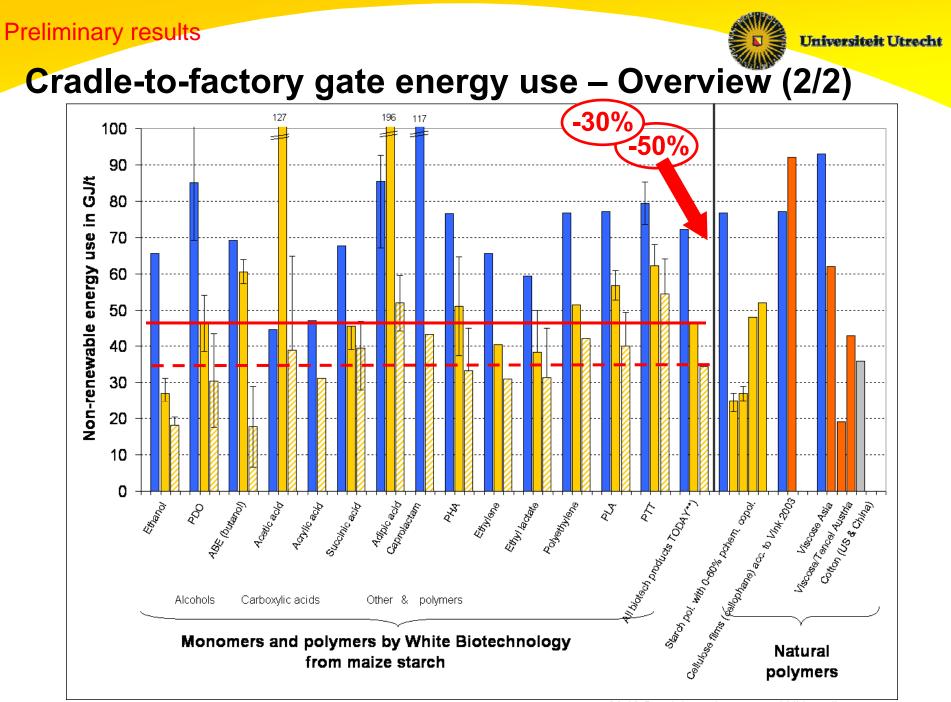
Preliminary results



Copernicus Institute

Polyethylene from oil, coal and biomass

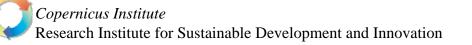
Preliminary results



Copernicus Institute Calculations based on BREW Study (2006) and Ph.D. thesis Tao Ren (forthcoming). Research Institute for Sustainable Development and Innovation

Contents

- Truly needed?
- Measuring environmental sustainability
- Bifurcation
- More evidence
- Limits to growth
- Building block for sustainable development


Technology perspective vs. company perspective

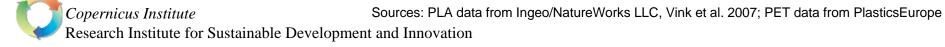
PLA with and without wind energy

		2005 <u>without</u> wind energy	2006 <u>with</u> wind energy				
NREU	MJ/kg PLA	50.2	27.2				
GWP	kg CO ₂ eq/kg PLA	2.0	0.3				

Is in line with EU goals for 2020:

Reduce overall emissions to at least 20% below 1990 levels, save 20% energy, and reach 20% renewables.

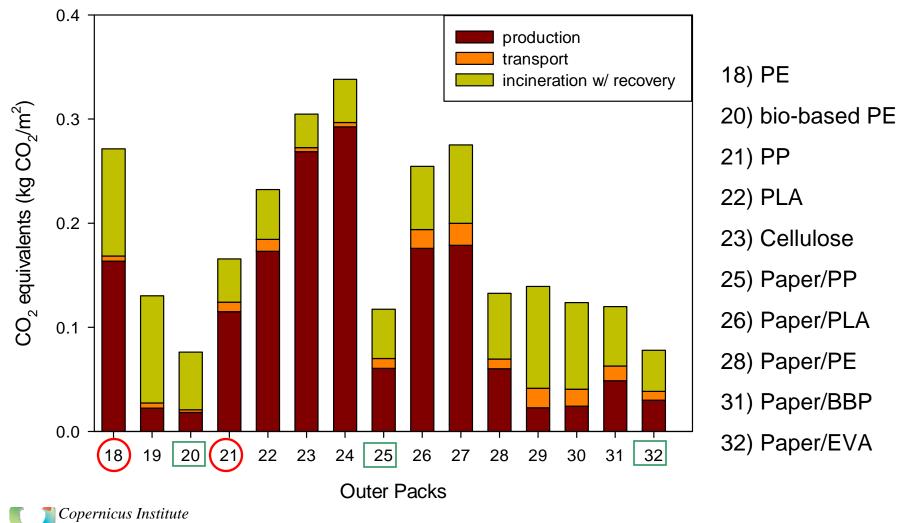
Functional unit



Comparison of PLA with PET, per kg

		PLA <u>without</u> wind energy 2005	PLA <u>with</u> wind energy 2006	PET
NREU	MJ/kg	50.2	27.2	80.8
GWP	kg CO ₂ eq./kg	2.0	0.3	3.3

Critical factor for material use (dies): If 1.6 more PLA than PET (possible for diverse commercial products)

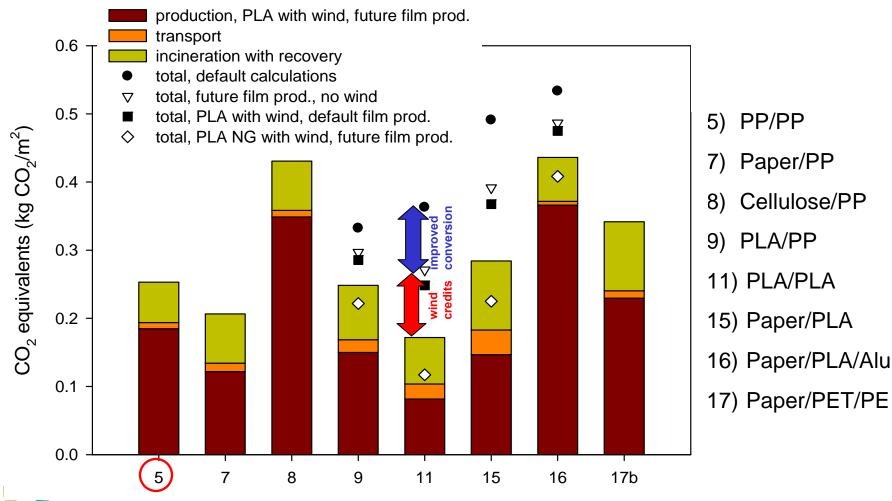

Density PET: 1.35 – 1.39 kg/litre Density PLA: 1.25 kg/litre

Food company project (1/2)

Cradle-to-grave: incineration with energy recovery

Research Institute for Sustainable Development and Innovation

Caveat: Snapshot for current technology.


Universiteit Utrecht

Food company project (2/2)

Universiteit Utrecht

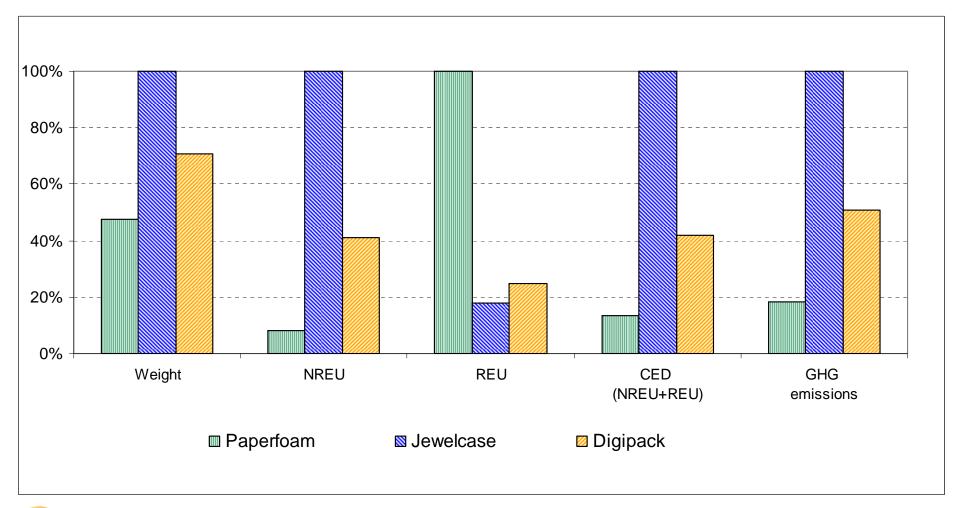
Global warming potential of Inner Packs including wind credits and future technology for PLA film production; *cradle-to-grave*: incineration with energy recovery

PaperFoam project (1/2)

Energy and GHG emissions in perspective

Jewelcase (polystyrene tray + polystyrene cover)

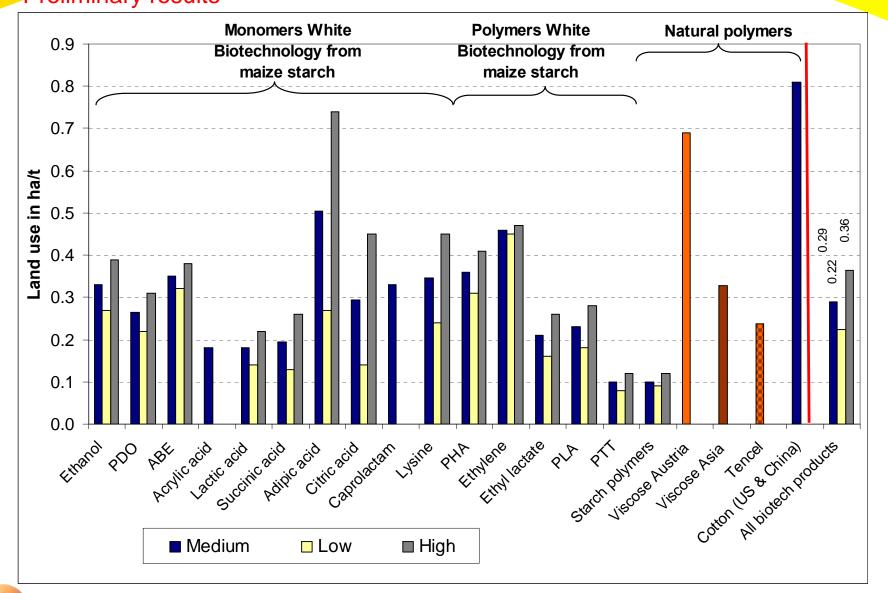




PaperFoam (PaperFoam tray + cardboard cover)

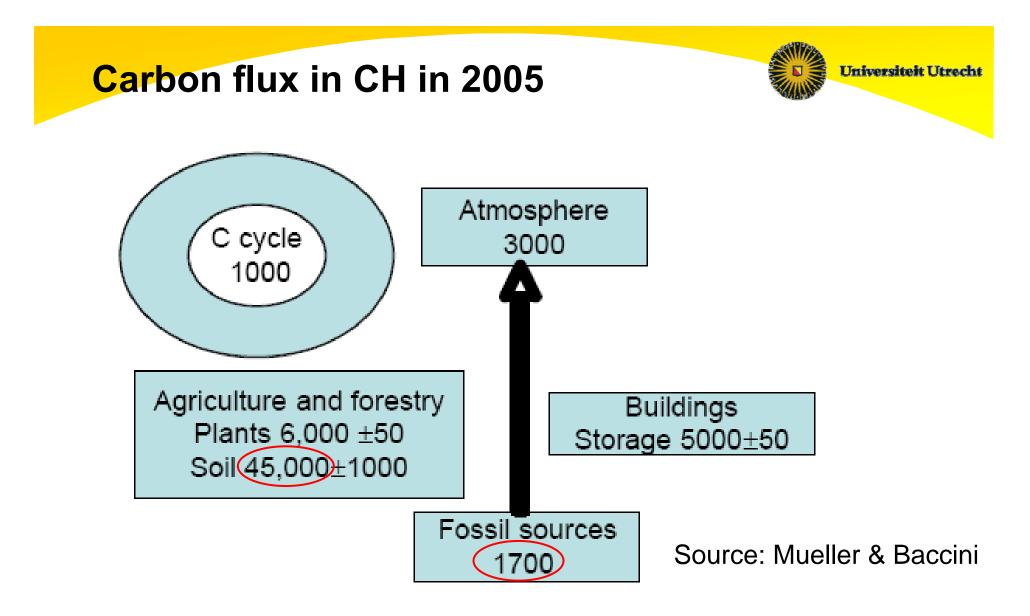
DigiPack (polystyrene tray + cardboard cover)

Copernicus Institute


Contents

- Truly needed?
- Measuring environmental sustainability
- Bifurcation
- More evidence
- Limits to growth
- Building block for sustainable development

Land use (2/2) Preliminary results


Universiteit Utrecht

Copernicus Institute

Research Institute for Sustainable Development and Innovation

M. K. Patel, based on several UU studies, 2008

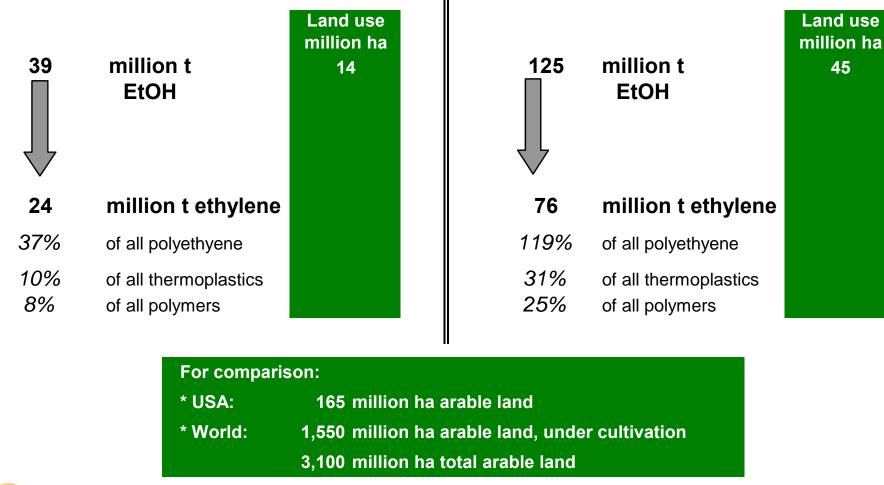
UK soils have lost 15% of carbon in 1978-2003, equals 15 million tonnes (Bellamy, 2005)

Copernicus Institute

Global ethanol production and conclusions for bio-based polymers (1/2)

Preliminary results

39 million t EtOH


24 million t ethylene

- 37% of all polyethyene
- 10% of all thermoplastics
- 8% of all polymers

Global ethanol production **Service** and conclusions for bio-based polymers (2/2)

Preliminary results

Copernicus Institute

Rethinking demand

= 355 kcal

≈ 1.5 MJ (without processing)

14 grammes PET Total NREU (material + processing) ≈ 1.4 MJ (with processing)

Contents

- Truly needed?
- Measuring environmental sustainability
- Bifurcation
- More evidence
- Limits to growth
- Building block for sustainable development

		Biodeg	radable vs. Bio-ba	sed Universiteit Utrecht				
	Fully Biodegradable	-PBS -PBSL -PBSA	-Starch blends (with biodegradable fossil- based coplymers) -Vegetable-oil based polyesters	-TPS -Starch blends (with biobased and biodegradable copolymers) -PLA -PHA/PHB -Cellulose film				
Biodegradability	Partially Biodegradable		- Starch blends (with polyolefins)					
Bio	Non- Biodegradable	-PE -PP -PET -PVC -PUR -ABS -Epoxy resin -Synthetic rubber	-Biobased PTT, PBT -Biobased PET -Biobased PVC -Biobased PUR -Biobased polyacrylates -Biobased ABS -Biobased Epoxy resin -Biobased SBR -Alkyd resin	-Biobased PE -Biobased PP -Biobased PA -Biobased PB -PO3G				
		Fully fossil-based	Partially Biobased	Fully Biobased				
			Biobased raw material					

Technical Substitution Potential

Preliminary results

All values in 1000 tonnes	PE-LD	PE- HD	PP	PVC	PS ¹⁾	PET	PUR	PA	ABS ²⁾	PC	PBT	PMMA	Other Polyacryl ates	Epoxy resin	Synthetic rubber	Other	Total	% subst
Consumption in W. Europe	8,415	5,940	9,405	6,435	3,465	3,465	2,970	863	646	336	180	204	205	370	1,810	4,790	49,500	100
Starch polymers	673	475	752	0	277	0	238	0	0	0	0	8	0	0	0	0	2,424	5
PLA	0	594	941	0	347	693	0	86	0	0	0	10	0	0	0	0	2,671	5
PHA	1,683	1,188	941	644	693	347	297	0	65	0	0	10	0	0	0	0	5,866	12
Vegetable oil-based polyesters	168	119	188	0	69	0	59	0	0	0	0	2	0	0	0	0	606	1
Cellulose films	0	0	9												0	0	2,450	5
Biobased PE	5,891	3,564		- nta	Inc	slvm	חסר <i>ו</i>	cor	ne V		tor	n Fi	irope	- C	0	0	9,455	19
Biobased PP	0	0	5,	ota	n pc	луп			1 3 . v	v CS			nopu	٠.	0	0	5,173	10
Biobased PVC ⁴⁾	0	0				~5	0 m	illio	ntr	۱ a					0	0	5,148	10
Biobased PET ⁴⁾	0	0				~0			n i c f	J.a.					0	0	1,213	2
Biobased PTT 3)	0	0	4												0	0	1,680	3
Biobased PUR ⁴⁾	0	0		⁻ ecł	nnic	al r	onte	ntia	al bi	o-h	ase	.h			0	0	2,376	5
Biobased PA	0	0	•	00.		-									0	0	259	1
Biobased Polyacrylates 4)	0	0				~4	2 m	illio	ntp).a.	(85	5%)			0	0	205	0
Biobased Epoxy resins 4)	0	0							·· • Γ						0	0	278	1
Biobased ABS ⁴⁾	0	0	0	0	0	0	0	0	581	0	0	0	0	0	0	0	581	1
Biobased Synthetic rubber 4)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,448	0	1,448	3
Sum volumes	8,415	5,940	9,405	6,435	1,733	3,465	2,970	604	646	67	180	41	205	278	1,448	0	41,832	85

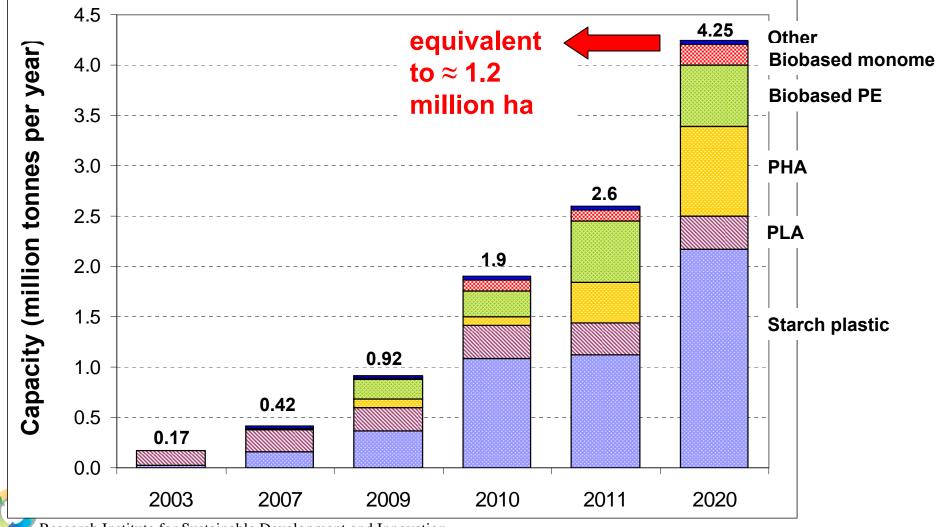
¹⁾ PS (all types) and EPS

²⁾ABS/SAN

³⁾Including other partially biobased polyesters

⁴⁾ Partially biobased polymers

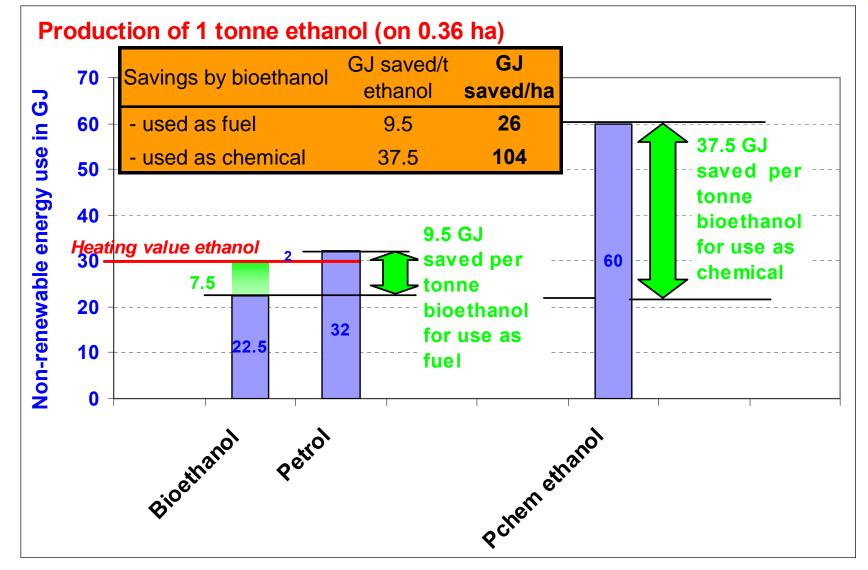
⁵⁾ For PE, PP, PVC, PS, PET and PA, consumption data are for 2006 (PlasticsEurope, 2008); For ABS, PBT, PMMA and other polyacrylates, consumption data are for 2003 (PlasticsEurope, 2004); For Epoxy resin and synthetic rubber, consumption data are for 2000 (Ullmanns, 2007)



Copernicus Institute

Global capacities of bio-based polymers (in kt)

Universiteit Utrecht


(historical data for 2003-2007; announcements for >2007) Preliminary results

Bio-based chemicals or biofuels?

Universiteit Utrecht

Copernicus Institute

Research Institute for Sustainable Development and Innovation

M.K. Patel: Understanding bio-economics. European Plastics News, March 2008, pp.28-29

Conclusions

Universiteit Utrecht

- Important opportunities for reducing environmental impacts (esp. NREU and GHG)
- Likely to be **needed** (policy?)
- Substantial differences across the polymers and final products
- Some **drawbacks** still not fully understood (soil, toxicity of agricultural chain)
- Challenge: Maximize (environmental) benefits by
 - optimal portfolio of bio-based polymers
 - closing loops by reuse and recycling
 - avoidance of excessive material use

Acknowledgements

- Li Shen
- Barbara Hermann
- Manuela Crank
- Tao Ren

Dr. Martin Patel

Utrecht University, Department of Science, Technology and Society (STS) / Copernicus Institute, Utrecht, Netherlands

Tel.: +31 30 253-7634, Fax +31 30 253-7601, m.k.patel@uu.nl